Investigation of Au SAMs Photoclick Derivatization by PM-IRRAS

Langmuir. 2020 Feb 4;36(4):1014-1022. doi: 10.1021/acs.langmuir.9b03782. Epub 2020 Jan 23.

Abstract

In this work, we present a clean one-step process for modifying headgroups of self-assembled monolayers (SAMs) on gold using photo-enabled click chemistry. A thiolated, cyclopropenone-caged strained alkyne precursor was first functionalized onto a flat gold substrate through self-assembly. Exposure of the cyclopropenone SAM to UVA light initiated the efficient photochemical decarbonylation of the cyclopropenone moiety, revealing the strained alkyne capable of undergoing the interfacial strain-promoted alkyne-azide cycloaddition (SPAAC). Irradiated SAMs were derivatized with a series of model azides with varied hydrophobicity to demonstrate the generality of this chemical system for the modification and fine-tuning of the surface chemistry on gold substrates. SAMs were characterized at each step with polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) to confirm the successful functionalization and reactivity. Furthermore, to showcase the compatibility of this approach with biochemical applications, cyclopropenone SAMs were irradiated and modified with azide-bearing cell adhesion peptides to promote human fibroblast cell adhesion, and then imaged by live-cell fluorescence microscopy. Thus, the "photoclick" methodology reported here represents an improved, versatile, catalyst-free protocol that allows for a high degree of control over the modification of material surfaces, with applicability in materials science as well as biochemistry.

Publication types

  • Research Support, Non-U.S. Gov't