Magnetic γFe2O3@Sh@Cu2O: an efficient solid-phase catalyst for reducing agent and base-free click synthesis of 1,4-disubstituted-1,2,3-triazoles

BMC Chem. 2020 Jan 7;14(1):1. doi: 10.1186/s13065-019-0657-9. eCollection 2020 Dec.

Abstract

A hybrid magnetic material γFe2O3@Sh@cu2O was easily prepared from Shilajit (Sh) decorated Fe3O4 and copper acetate. The prepared magnetic hybrid material was fully characterized using different analysis, including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), inductively coupled plasma (ICP), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) thermal gravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET). All these analysis revealed that during coating of Fe3O4@Sh using copper salt (II), synchronized redox sorption of CuII to CuI occurs at the same time as the oxidation of Fe3O4 to γFe2O3. This magnetic catalyst exhibited excellent catalytic activity for regioselective synthesis of 1,4-disubstituted-1,2,3-triazoles via one pot three-component click reaction of sodium azide, terminal alkynes and benzyl halides in the absence of any reducing agent. High yields, short reaction time, high turnover number and frequency (TON = 3.5 * 105 and TOF = 1.0 * 106 h-1 respectively), easy separation, and efficient recycling of the catalyst are the strengths of the present method.

Keywords: Click synthesis; Heterogeneous catalyst; Humic acids; Hybrid magnetic material; Shilajit.