Bioautography and GC-MS based identification of piperine and trichostachine as the active quorum quenching compounds in black pepper

Heliyon. 2020 Jan 2;6(1):e03137. doi: 10.1016/j.heliyon.2019.e03137. eCollection 2020 Jan.

Abstract

In the search of new and safe antibacterial compounds, the quorum sensing system (QS) modulation by natural products has been studied. As a result, many plant-derived compounds have been identified as potent quorum sensing inhibitors. Piper nigrum L. (black pepper) ethanolic extract inhibits the QS in some Gram-negative bacteria but the active components have not been previously identified. Thus, the objective of this work was to identify the P. nigrum peppercorns main components that block the QS, applying bioassay and chromatographic techniques. Piperine and trichostachine were identified as the main components responsible for the quorum quenching (QQ) activity of P. nigrum peppercorns extract. Piperine at 30 mg/L, decreased the violacein production by Chromobacterium violaceum CV026 by 35%, without affecting bacterial growth. Piperine concentration of 40 mg/L decreases violacein production by C. violaceum CV026 by 70% and growth in only 4.34%. Trichostachine at 50 mg/L decreases violacein production by C. violaceum CV026 by 12%, without affecting bacterial growth. P. nigrum extract concentration of 0.5 g/L decreased violacein production in 40 % and no effects on growth were observed. Neither P. nigrum extract, piperine, nor trichostachine did affect QS of Pseudomonas aeruginosa PAO1. Data here described exhibit the potential of piperamides as modulators of QS, not previously reported.

Keywords: Food science; N-Acyl homoserine lactone; Piper nigrum; Piperamide; Quorum quenching; Quorum sensing.