Visible-to-UV Photon Upconversion in Nanostructured Chromophoric Ionic Liquids

ChemistryOpen. 2019 Nov 26;9(1):14-17. doi: 10.1002/open.201900304. eCollection 2020 Jan.

Abstract

Visible-to-ultraviolet (vis-to-UV) triplet-triplet annihilation based photon upconversion (TTA-UC) is achieved in a non-volatile chromophoric ionic liquid (IL) for the first time. A novel IL is synthesized by combining UV-emitting anion 4-(2-phenyloxazol-5-yl)benzenesulfonate (PPOS) and trihexyltetradecylphosphonium cation (P66614). The nanostructured organization of chromophoric anions is demonstrated by synchrotron X-ray and optical measurements. When the IL is doped with a triplet sensitizer tris(2-phenylpyridinato)iridium(III) (Ir(ppy)3), the visible-to-UV TTA-UC with a relatively low threshold excitation intensity of 61 mW cm-2 is achieved. This is due to a large triplet diffusion coefficient in the IL (1.4×10-7 cm2 s-1) as well as a high absorption coefficient 15 cm-1 and a long PPOS triplet lifetime of 1.55 ms, all implemented in the condensed IL system. This work demonstrates the unique potential of ILs to control chromophore arrangements for desired functions.

Keywords: functional supramolecular chemistry; ionic liquids; nanostructures; photon upconversion; self-assembly.

Publication types

  • Research Support, Non-U.S. Gov't