Exposure to Conspecific and Heterospecific Sex-Pheromones Modulates Gustatory Habituation in the Moth Agrotis ipsilon

Front Physiol. 2019 Dec 20:10:1518. doi: 10.3389/fphys.2019.01518. eCollection 2019.

Abstract

In several insects, sex-pheromones are essential for reproduction and reproductive isolation. Pheromones generally elicit stereotyped behaviors. In moths, these are attraction to conspecific sex-pheromone sources and deterrence for heterospecific sex-pheromone. Contrasting with these innate behaviors, some results in social insects point toward effects of non-sex-pheromones on perception and learning. We report the effects of sex-pheromone pre-exposure on gustatory perception and habituation (a non-associative learning) in male Agrotis ipsilon moths, a non-social insect. We also studied the effect of Z5-decenyl acetate (Z5), a compound of the sex-pheromone of the related species Agrotis segetum. We hypothesized that conspecific sex-pheromone and Z5 would have opposite effects. Pre-exposure to either the conspecific sex-pheromone or Z5 lasted 15 min and was done either immediately or 24 h before the experiments, using their solvent alone (hexane) as control. In a sucrose responsiveness assay, pre-exposure to the conspecific sex-pheromone had no effect on the dose-response curve at either delays. By contrast, Z5 slightly improved sucrose responsiveness 15 min but not 24 h after pre-exposure. Interestingly, the conspecific sex-pheromone and Z5 had time-dependent effects on gustatory habituation: pre-exposing the moths with Z5 hindered learning after immediate but not 24-h pre-exposure, whereas pre-exposure to the conspecific sex-pheromone hindered learning at 24-h but not immediate pre-exposure. They did not have opposite effects. This is the first time a sex-pheromone is reported to affect learning in a non-social insect. The difference in modulation between conspecific sex-pheromone and Z5 suggests that con- and hetero-specific sex-pheromones act on plasticity through different cerebral pathways.

Keywords: gustatory perception; habituation; insect; moth; non-associative learning; pheromone; proboscis extension response; sugar responsiveness.