High Precision Electronic Spectroscopy of Ligand-Protected Gold Nanoclusters: Effects of Composition, Environment, and Ligand Chemistry

J Phys Chem A. 2020 Feb 27;124(8):1467-1479. doi: 10.1021/acs.jpca.9b09164. Epub 2020 Jan 22.

Abstract

Atomically precise gold nanoclusters (AuNCs) are a class of nanomaterials valued for their electronic properties and diverse structural features. While the advent of X-ray crystallography of AuNCs has revealed their geometric structures with high precision, detailed electronic structure analysis is challenged by environmental, compositional, and thermal averaging effects present in electronic spectra of typical samples. To circumvent these challenges, we have adapted mass spectrometer-based electronic absorption spectroscopy techniques to acquire high-resolution electronic spectra of atomically precisely defined nanoclusters separated from a synthetic mixture. Here we discuss recent results using this approach to link the surface chemistry of triphenylphosphine-protected AuNCs to their electronic structure and expand on key elements of the experiment and the link between these gas-phase measurements and solution-phase behavior of AuNCs. Chemically derivatized Au8(P(p-X-Ph)3)72+ and Au9(P(p-X-Ph)3)83+ clusters, where X = -H, -CH3, or -OCH3, are used to derive systematic trends in the response of the electronic spectrum to the electron-donating character of the ligand shell. We find a linear relationship between the substituent Hammett parameter σp and the transition energy between both sets of clusters' highest occupied and lowest unoccupied molecular orbitals, a transition that is localized in the metal core within the limits of the superatomic model. The similarity of the mass-selective and solution-phase UV/vis spectra of Au9(PPh3)83+ indicates that the interpretation of these experiments is transferable to the condensed phase. He and N2 environments are introduced to a series of isovalent clusters as a subtle probe of discrete environmental effects over electronic structure. Strikingly, select bands in the UV/vis spectrum respond strongly to the identity of the environment, which we interpret as a state-selective indicator of interfacially relevant electronic transitions. Physically predictable trends such as these will aid in building molecular design principles necessary for the development of novel materials based on nanoclusters.