Light trapping structures and plasmons synergistically enhance the photovoltaic performance of full-spectrum solar cells

Nanoscale. 2020 Jan 23;12(3):1269-1280. doi: 10.1039/c9nr08761c.

Abstract

A full-spectrum solar cell exhibits potential as an effective strategy to enhance the absorption of incident solar light. To ensure the absorption capability of solar cells, trapping structures or plasmons have emerged as two main ways of utilizing the full spectrum of solar energy. First, recent progress in the full-spectrum solar cells based on NCs was reviewed from the aspects of trapping structures and plasmon design. Moreover, the effects of light trapping and surface plasmon resonance on light absorption and photoelectronic conversion were emphasized and discussed. Finally, the application prospect of their combination in the field of full-spectrum solar cells was examined. It was pointed out that the deep exploration of the physical mechanism of photoelectric conversion, controllable preparation of the interface and stability of composite structures will become the main directions of future research.

Publication types

  • Review