Antifreezing and Stretchable Organohydrogels as Soft Actuators

Research (Wash D C). 2019 Dec 13:2019:2384347. doi: 10.34133/2019/2384347. eCollection 2019.

Abstract

Inspired by the freezing tolerance performances found in living creatures, an effect approach is presented to develop novel antifreezing polymeric organohydrogel actuators. Through construction of a bilayer hydrogel including a nonresponsive polyacrylamide (PAAm) layer and a pH-responsive polyacrylic acid (PAA) layer in the presence of a mixed solvent of water and glycerol, organohydrogel actuators that could produce various shape deformations at subzero temperatures have been achieved, and the actuating speed could be tuned by adjusting the temperature and the ratio between glycerol and water. Moreover, a series of application demonstrations including a weightlifting robot, artificial valve, and robotic arm have been displayed. In addition, by introducing the ionic compound KI into the glycerol-based organogel, flexible conductors that could perform stable sensing performance over a wide range of temperatures from -30°C to 60°C have been developed.