Evaluating vanadium bioavailability to cabbage in rural soils using geochemical and micro-spectroscopic techniques

Environ Pollut. 2020 Mar:258:113699. doi: 10.1016/j.envpol.2019.113699. Epub 2019 Dec 2.

Abstract

Assessing the vanadium (V) fractionation and speciation to predict its bioavailability using a combined approach of geochemical extractions and micro-spectroscopic techniques is still not well studied. Therefore, we aimed to determine the bioavailability of V in rural soils using single extractants, sequential extraction procedure, and the X-ray absorption near edge structure (XANES) spectroscopy. We collected and characterized ninety four samples originated from horizons of seventeen soil profiles in Taiwan. We determined the total content of V and its geochemical fractions using the BCR sequential extraction procedure to predict its potential mobility. We also assessed the bioavailability of V in the soils using four availability indices i.e., CaCl2, HCl, ethylenediaminetetraacetic acid (EDTA), and NaHCO3 and related them to its uptake by Chinese cabbage (Brassica chinensis L.). Additionally, we determined the V speciation by vanadium K-edge XANES spectra. Moreover, we studied the elemental compositions of the soils using Electron Probe Micro Analysis (EPMA). Vanadium was mainly distributed in the residual fraction (81-98% of total V). Among the potential mobile fractions, V was mainly associated with Fe oxides, as identified by the BCR sequential extraction and EMPA. The XANES analysis indicated that V mainly existed in the soils as V(IV) and V(V). The EDTA and NaHCO3 extracted more V than CaCl2 and HCl, and both, particularly NaHCO3 were positively and significantly correlated with the total soil content and plant shoot concentrations of V; therefore NaHCO3 might be recommended as a bioavailability index for soil V. We hypothesize that the NaHCO3 may extract vanadate from soil surfaces and also vanadate transformed from vanadyl at alkaline pH during the extraction. The NaHCO3-extracted V can be predicted by a function of soil total V, CEC, and pH. Our results should be verified using different soils and plants in the future.

Keywords: Chinese cabbage; Sequential extraction; Soil contamination; Vanadium bioavailability; XANES spectroscopy.

MeSH terms

  • Biological Availability
  • Brassica / metabolism*
  • Soil Pollutants / metabolism*
  • Taiwan
  • Vanadium / metabolism*

Substances

  • Soil Pollutants
  • Vanadium