In vitro study on chondrogenic differentiation of human adipose-derived stem cells on treated bovine pericardium

Turk J Biol. 2019 Dec 13;43(6):360-370. doi: 10.3906/biy-1908-10. eCollection 2019.

Abstract

Bovine pericardium has been proposed as an available material for tissue engineering and bioprosthetic reconstruction. In this study, bovine pericardium was fabricated into a scaffold for culturing and chondrogenic differentiation of human adipose-derived stem cells (hADSCs). Bovine pericardium was treated in 10 mM Tris-HCl and 0.15% SDS, followed by crosslinking in 0.1% glutaraldehyde. Treated bovine pericardium (tBP) was characterized as a slight yellowish thin membrane with enhanced tensile strength and strain property. The membrane maintained stability under enzymatic conditions for up to 16 days of incubation. The results confirmed tBP as a cell-friendly scaffold for hADSCs due to low cytotoxicity and its ability to support an appropriate attachment and proliferation of hADSCs. Moreover, there was an accumulation of the extracellular matrix proteoglycan in tBP seeded with hADSCs after 7 and 14 days of chondrogenic induction. COMP as a specific marker of chondrogenesis was detected after 7 days, whereas type X-a1 collagen (Col10a1) expression was stable up to day 14. However, minor expression of aggrecan was found. Taken together, these results indicate that tBP is a potential scaffold for hADSCs for cartilage tissue engineering.Key words: Bovine pericardium, scaffold, adipose-derived stem cells, chondrogenic differentiation, cartilage regeneration, augmentation rhinoplasty.

Keywords: Bovine pericardium; adipose-derived stem cells; augmentation rhinoplasty; cartilage regeneration; chondrogenic differentiation; scaffold.