Layer-by-layer modified low density cellulose fiber networks: A sustainable and fireproof alternative to petroleum based foams

Carbohydr Polym. 2020 Feb 15:230:115616. doi: 10.1016/j.carbpol.2019.115616. Epub 2019 Nov 14.

Abstract

Wood-based cellulose fibers were used to prepare porous, low density and wet-stable fiber networks (FN). Multilayer coatings consisting of chitosan (CH), sodium hexametaphosphate (SHMP) and inorganic nanoparticles comprising of either sodium montmorillonite (MMT), sepiolite (SEP) or colloidal silica (SNP) were deposited by the layer-by-layer (LbL) technique onto FNs in an effort to impart flame-retardancy. A simulated fire scenario measured by cone calorimetry showed that five quadlayers (QL) of CH/SHMP/CH/MMT, CH/SHMP/CH/SEP and CH/SHMP/CH/SNP can produce significant reduction in peak heat release rate (pkHRR). In detail, the coating containing SEP showed the largest reduction of the pkHRR by 47% relative to the uncoated FN. MMT and SEP coated FNs were also able to self-extinguish fire and to retain their shapes after direct exposure to a methane flame. This study hence shows that the LbL assembly is a highly effective way to impart flame-retardant properties to this new type of porous FN.

Keywords: Cellulose fiber; Flame-retardant; Layer-by-layer assembly; Thermal stability.