Ln-CPs constructed from unsymmetrical tetracarboxylic acid ligand: Tunable white-light emission and highly sensitive detection of CrO42-, Cr2O72-, MnO4- in water

Spectrochim Acta A Mol Biomol Spectrosc. 2020 Mar 15:229:117915. doi: 10.1016/j.saa.2019.117915. Epub 2019 Dec 16.

Abstract

A series of isostructural lanthanide coordination polymers (Ln-CPs), [Ln(Hbptc)(H2O)4]·H2O [Ln = Er (1), Pr (2), Dy (3), Sm (4), Gd (5), Nd (6) and Tb(7); H4bptc = 2,3,3',4'-biphenyl tetracarboxylic acid] have been isolated based on an unsymmetrical tetracarboxylic acid. Single-crystal X-ray diffraction analysis reveals that all CPs featured a two dimensional (2D) layer with (6, 6, 6)-connected 63 topology. Luminescent spectra demonstrate that CPs 1-7 exhibit impressive UV-visible luminescence in the solid state at room temperature. More significantly, a single-component white-light material with International Commission on Illumination (CIE) coordinates of (0.335, 0.334) for 4 (Sm-CP), very closing to the pure white-light of (0.333, 0.333) was obtained by finely tuning of the excitation wavelength. In addition, the luminescent detection for anions of 7 is investigated. Fluorescence measurements show that 7 can detect oxoanion pollutants Cr2O72-, CrO42-, and MnO4- anions in aqueous solutions with high selectivity and sensitivity, which suggests that the Tb-CP is a promising functional luminescence probe for toxic oxoanions. The possible mechanisms of the quenching effect were also discussed in detail.

Keywords: Coordination polymer; Luminescence probe; Unsymmetrical tetracarboxylic acid; White-light.