Design, synthesis characterization and biological evaluation of novel multi-isoform ALDH inhibitors as potential anticancer agents

Eur J Med Chem. 2020 Feb 1:187:111962. doi: 10.1016/j.ejmech.2019.111962. Epub 2019 Dec 12.

Abstract

The aldehyde dehydrogenases (ALDHs) are a family of detoxifying enzymes that are overexpressed in various cancers. Increased expression of ALDH is associated with poor prognosis, stemness, and drug resistance. Because of the critical role of ALDH in cancer stem cells, several ALDH inhibitors have been developed. Nonetheless, all these inhibitors either lack efficacy or are too toxic or have not been tested extensively. Thus, the continued development of ALDH inhibitors is warranted. In this study, we designed and synthesized potent multi-ALDH isoform inhibitors based on the isatin backbone. The early molecular docking studies and enzymatic tests revealed that 3(a-l) and 4(a-l) are the potent ALDH1A1, ALDHA2, and ALDH3A1 inhibitors. ALDH inhibitory IC50s of 3(a-l) and 4(a-l) were 230 nM to >10,000 nM for ALDH1A1, 939 nM to >10,000 nM for ALDH2 and 193 nM to >10,000 nM for ALDH3A1. The most potent compounds 3(h-l) had IC50s for killing melanoma cells ranged from 2.1 to 5.7 μM, while for colon cancer cells, it ranged from 2.5 to 5.8 μM and for multiple myeloma cells ranging from 0.3 to 4.7 μM. Toxicity studies of 3(h-l) revealed that 3h to be the least toxic multi-ALDH isoform inhibitor. Mechanistically, 3(h-l) caused increased ROS activity, lipid peroxidation, and toxic aldehyde accumulation, secondary to potent multi-ALDH isoform inhibition leading to increased apoptosis and G2/M cell cycle arrest. Together, the study details the design, synthesis, and evaluation of potent, multi-isoform ALDH inhibitors to treat cancers.

Keywords: Aldehyde dehydrogenases; Cancer therapeutics; Colon cancer; Drug design; Drug development; Molecular docking; Multiple myeloma.

MeSH terms

  • Aldehyde Dehydrogenase / antagonists & inhibitors*
  • Aldehyde Dehydrogenase / metabolism
  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Cycle Checkpoints / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Humans
  • Isoenzymes / antagonists & inhibitors
  • Isoenzymes / metabolism
  • Mice
  • Molecular Docking Simulation
  • Molecular Structure
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Isoenzymes
  • Protein Kinase Inhibitors
  • Aldehyde Dehydrogenase