Visible-Transparent Luminescent Solar Concentrators Based on Carbon Nanodots in the Siloxane Matrix with Ultrahigh Quantum Yields and Optical Transparency at High-Loading Contents

J Phys Chem Lett. 2020 Jan 16;11(2):567-573. doi: 10.1021/acs.jpclett.9b03539. Epub 2020 Jan 8.

Abstract

Visible-transparent luminescent solar concentrators (VT-LSCs) can be integrated with solar cells for designing solar glasses. Recently, rare-earth complexes, semiconductor nanocrystals, and carbon nanodots (CNDs) have been applied in developing VT-LSCs. However, several challenges still existed, such as quantum yields (QYs) at high-loading contents, scattering/reabsorption losses, and stability. Here, highly luminescent and visible-transparent composites based on organosilane-functionalized CNDs (Si-CNDs) cross-linked in the siloxane matrix were prepared. The composites with a high-loading content (∼10 wt %) possess ultrahigh QYs of ∼94% due to surface passivation, cross-linking-enhanced emission, and negligible inter-CND energy transfer. Moreover, they still appear exceptionally transparent and, thus, are suitable for VT-LSCs. Eco-friendly VT-LSCs without colored tinting were fabricated, yielding high internal and external quantum efficiencies of ∼66% and ∼3.9%. Our demonstration would pave a bright way for the utilization of eco-friendly VT-LSCs in solar glasses.