Chromosomal Conjugative and Mobilizable Elements in Streptococcus suis: Major Actors in the Spreading of Antimicrobial Resistance and Bacteriocin Synthesis Genes

Pathogens. 2019 Dec 25;9(1):22. doi: 10.3390/pathogens9010022.

Abstract

Streptococcus suis is a zoonotic pathogen suspected to be a reservoir of antimicrobial resistance (AMR) genes. The genomes of 214 strains of 27 serotypes were screened for AMR genes and chromosomal Mobile Genetic Elements (MGEs), in particular Integrative Conjugative Elements (ICEs) and Integrative Mobilizable Elements (IMEs). The functionality of two ICEs that host IMEs carrying AMR genes was investigated by excision tests and conjugation experiments. In silico search revealed 416 ICE-related and 457 IME-related elements. These MGEs exhibit an impressive diversity and plasticity with tandem accretions, integration of ICEs or IMEs inside ICEs and recombination between the elements. All of the detected 393 AMR genes are carried by MGEs. As previously described, ICEs are major vehicles of AMR genes in S. suis. Tn5252-related ICEs also appear to carry bacteriocin clusters. Furthermore, whereas the association of IME-AMR genes has never been described in S. suis, we found that most AMR genes are actually carried by IMEs. The autonomous transfer of an ICE to another bacterial species (Streptococcus thermophilus)-leading to the cis-mobilization of an IME carrying tet(O)-was obtained. These results show that besides ICEs, IMEs likely play a major role in the dissemination of AMR genes in S. suis.

Keywords: Streptococcus suis; antimicrobial resistance; bacteriocin synthesis cluster; chromosomal excision; conjugative transfer; integrative conjugative elements; integrative mobilizable elements.