In Vitro and in Vivo Anti-Hyperglycemic Activities of Taxifolin and Its Derivatives Isolated from Pigmented Rice (Oryzae sativa L. cv. Superhongmi)

J Agric Food Chem. 2020 Jan 22;68(3):742-750. doi: 10.1021/acs.jafc.9b04962. Epub 2020 Jan 10.

Abstract

Superhongmi is a new rice variety, which was developed for the enrichment of bioactive compounds through cross-breeding three varieties of rice breeds in Korea. The high-performance liquid chromatography coupled with a photodiode array detector quadrupole and tandem time-of-flight mass spectrometry (HPLC/PDA/QTOF-MS) analysis has revealed that superhongmi bran extract contained four taxifolin derivatives as well as cyanidin 3-glucoside. The high-performance countercurrent chromatography (CCC) and reversed-phase HPLC led to the isolation of aforementioned five compounds, and spectroscopic analysis identified cyanidin 3-glucoside (1), along with (2R,3R)-taxifolin 3-O-β-d-glucopyranoside (2), (2R,3R)-4'-O-methyltaxifolin 3-O-β-d-glucopyranoside (a novel compound) (3), (2R,3R)-taxifolin (4), and (2R,3R)-4'-O-methyltaxifolin (5). Compound 2 had the highest rat small intestinal sucrase inhibitory activity (0.54 mM) relevant for potentially managing postprandial hyperglycemia, followed by compound 1 (0.97 mM) and compound 4 (1.74 mM, IC50). The anti-hyperglycemic effect of compound 4 (taxifolin), a main peak in HPLC analysis was investigated using a Sprague-Dawley (SD) rat model. Compared to a control, taxifolin treatment (p < 0.001) reduced significantly after sucrose loading the observed postprandial blood glucose and the maximum blood glucose (Cmax) by 15% (203.60 ± 15.86 to 172.30 ± 12.74). These results indicate that taxifolin derivatives that inhibit the activity of carbohydrate-hydrolyzing enzymes resulting in reduced dietary carbohydrate absorption can potentially be used as a strategy to manage diabetes.

Keywords: anti-hyperglycemic effects; postprandial hyperglycemia; sucrase; superhongmi; taxifolin.

MeSH terms

  • Animals
  • Blood Glucose / metabolism
  • Chromatography, High Pressure Liquid
  • Color
  • Humans
  • Hyperglycemia / drug therapy*
  • Hyperglycemia / metabolism
  • Hypoglycemic Agents / administration & dosage*
  • Hypoglycemic Agents / chemistry
  • Male
  • Oryza / chemistry*
  • Plant Extracts / administration & dosage*
  • Plant Extracts / chemistry
  • Postprandial Period / drug effects
  • Quercetin / administration & dosage
  • Quercetin / analogs & derivatives*
  • Quercetin / chemistry
  • Rats
  • Rats, Sprague-Dawley
  • Tandem Mass Spectrometry

Substances

  • Blood Glucose
  • Hypoglycemic Agents
  • Plant Extracts
  • Quercetin
  • taxifolin