Organoid and Assembloid Technologies for Investigating Cellular Crosstalk in Human Brain Development and Disease

Trends Cell Biol. 2020 Feb;30(2):133-143. doi: 10.1016/j.tcb.2019.11.004. Epub 2019 Dec 23.

Abstract

The biology of the human brain, and in particular the dynamic interactions between the numerous cell types and regions of the central nervous system, has been difficult to study due to limited access to functional brain tissue. Technologies to derive brain organoids and assembloids from human pluripotent stem cells are increasingly utilized to model, in progressively complex preparations, the crosstalk between cell types in development and disease. Here, we review the use of these human cellular models to study cell-cell interactions among progenitors, neurons, astrocytes, oligodendrocytes, cancer cells, and non-central nervous system cell types, as well as efforts to study connectivity between brain regions following controlled assembly of organoids. Ultimately, the promise of these patient-derived preparations is to uncover previously inaccessible features of brain function that emerge from complex cell-cell interactions and to improve our mechanistic understanding of neuropsychiatric disorders.

Publication types

  • Review

MeSH terms

  • Brain / growth & development*
  • Brain / pathology
  • Brain Diseases / pathology*
  • Cell Communication
  • Cell Lineage
  • Humans
  • Models, Biological
  • Organoids / metabolism*