Dielectric metasurfaces based on a rectangular lattice of a-Si:H nanodisks for color pixels with high saturation and stability

Opt Express. 2019 Nov 25;27(24):35027-35040. doi: 10.1364/OE.27.035027.

Abstract

Silicon dielectric metasurfaces based on a square lattice of nanoparticles have been extensively utilized to create transmissive structural colors. Yet it is a huge challenge to obtain stable yellow color with high saturation due to the relatively large absorption of silicon in the short wavelength regime and the applied square lattice. In this study, we propose a new design strategy of independently altering the mutually perpendicular periods of a hydrogenated amorphous silicon nanodisk array-enabled metasurface to meticulously modulate the transmission spectra for the realization of high-saturation and stable cyan, magenta and yellow (CMY) color pixels. By introducing rectangular lattice, the yellow pixel can provide a narrowband transmission spectrum with a highly suppressed dip at 455 nm. The high suppression in transmission contributes to give rise to high-saturation yellow color. The attained narrowband spectrum that enables low spectral cross-talk is attributed to the overlap between magnetic dipole resonance excited by individual nanodisks and lattice resonance arising from the dipole coupling between the nanodisks. Compared with the square lattice, the proposed pixels exhibit fairly stable output color responses for a large period range. Meanwhile, the proposed CMY pixels are capable of both the relaxed angular tolerance and low dependence on the incident polarization states. It is anticipated that the proposed color pixels pave the way for extensive applications in compact color displays.