Measurement of electron density and temperature from laser-induced nitrogen plasma at elevated pressure (1-6 bar)

Opt Express. 2019 Nov 11;27(23):33779-33788. doi: 10.1364/OE.27.033779.

Abstract

Laser-induced plasmas experience Stark broadening and shifts of spectral lines carrying spectral signatures of plasma properties. In this paper, we report time-resolved Stark broadening measurements of a nitrogen triplet emission line at 1-6 bar ambient pressure in a pure nitrogen cell. Electron densities are calculated using the Stark broadening for different pressure conditions, which are shown to linearly increase with pressure. Additionally, using a Boltzmann fit for the triplet, the electron temperature is calculated and shown to decrease with increasing pressure. The rate of plasma cooling is observed to increase with pressure. The reported Stark broadening based plasma diagnostics in nitrogen at high pressure conditions will be significantly useful for future studies on high-pressure combustion and detonation applications.