Interface-Charge Induced Giant Electrocaloric Effect in Lead Free Ferroelectric Thin-Film Bilayers

Nano Lett. 2020 Feb 12;20(2):1262-1271. doi: 10.1021/acs.nanolett.9b04727. Epub 2019 Dec 30.

Abstract

Conventional refrigeration methods based on compression-expansion cycles of greenhouse gases are environmentally threatening and cannot be miniaturized. Electrocaloric effects driven by electric fields are especially well suited for implementation of built-in cooling in portable electronic devices. However, most known electrocaloric materials present poor cooling performances near room temperature, contain toxic substances, and require high electric fields. Here, we show that lead-free ferroelectric thin-film bilayers composed of (Bi0.5Na0.5)TiO3-BaTiO3 (BNBT) and Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 (BCZT) display unprecedentedly large electrocaloric effects of ∼23 K near room temperature under moderate electric bias. The giant electrocaloric effect observed in BNBT/BCZT bilayers, which largely surpasses the sum of the individual caloric responses measured in BNBT and BCZT, is originated from the presence of compositional bound charges at their interface. Our discovery of interface charge-induced giant electrocaloric effects indicates that multilayered oxide heterostructures hold tremendous promise for developing highly efficient and scalable solid-state cooling applications.

Keywords: Lead-free ferroelectrics; electrocaloric effect; first-principles calculations; thin film bilayer.