Synthesis and Photoluminescence of Tetracyanidonitridorhenium(V) Complexes with Five-Membered N-Heteroaromatic Ligands and Photoluminescence-Intensity Change

ACS Omega. 2019 Nov 4;4(25):21251-21259. doi: 10.1021/acsomega.9b02749. eCollection 2019 Dec 17.

Abstract

Novel tetracyanidonitridorhenium(V) complexes with five-membered N-heteroaromatic ligands, (PPh4)2[ReN(CN)4L] [L = imidazole (Him) (2), 1-methylimidazole (Mim) (3), and pyrazole (pyz) (4)] and (PPh4)2[ReN(CN)4L]·L [L = Him (5) and Mim (6)], were synthesized by the reactions of (PPh4)2[ReN(CN)4] (1) with Him, Mim, and pyz, and their structures were determined by single-crystal X-ray analysis. The complexes 2, 3, 4, and 6 showed intense photoluminescence, with the emission quantum yields (Φem) being 0.65-0.75 in the solid state at 296 K. In contrast, the Φem and τem values of 5 are significantly smaller and shorter, respectively, than the relevant values of 2. The interconversion reactions among 1, 2, and 5 accompanied by large photoluminescence-intensity changes were accomplished by solvent-free reactions and exposure of water. The mechanochemical reaction of 2 with 1 mol equiv of Him in the solid state gave 5. Complex 5 was also obtained by the mechanochemical reaction of 1 with 2 mol equivalents of Him in the solid state. By placing solid of 5 in water, the solid showed intense photoluminescence to give 2. Complex 1 was produced under vacuum at 185 °C from 2 or 5.