Controlled Phase Behavior of Thermally Sensitive Poly(N-isopropylacrylamide/ionic liquid) with Embedded Au Nanoparticles

ACS Omega. 2019 Dec 3;4(25):20923-20930. doi: 10.1021/acsomega.9b01826. eCollection 2019 Dec 17.

Abstract

We have synthesized a series of poly(N-isopropylacrylamide/ionic liquid) with deposited Au nanoparticles. The size of the nanoparticle range was varied from 10 to 35 nm, and these were characterized by transmission electron microscopy analysis. Ionic liquids (IL) were chosen by varying the polymerizable unit to be both in cationic (allyl) and anionic (acrylate) moiety. One-pot polymerization was done with N-isopropylacrylamide and IL using ammonium persulphate as the initiator, to which were added already prepared Au NPs. These thermally sensitive composites formed, possessed reversible swelling/deswelling abilities in water, and demonstrated a reversible visible phase transition, which was detected by differential scanning calorimetric measurements. The lower critical solution temperature (LCST) showed dependency on the size of nanoparticles and the IL independently. It was seen that the LCST of PNIPAM-based composite films can be tuned from 32 °C to a range of 23-67 °C by choosing the desired Au NP size, its concentration and kind of IL.