Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus Ceriporiopsis subvermispora

ACS Sustain Chem Eng. 2019 Dec 16;7(24):20032-20042. doi: 10.1021/acssuschemeng.9b05780. Epub 2019 Nov 5.

Abstract

The white-rot fungus Ceriporiopsis subvermispora delignifies plant biomass extensively and selectively and, therefore, has great biotechnological potential. We previously demonstrated that after 7 weeks of fungal growth on wheat straw 70% w/w of lignin was removed and established the underlying degradation mechanisms via selectively extracted diagnostic substructures. In this work, we fractionated the residual (more intact) lignin and comprehensively characterized the obtained isolates to determine the susceptibility of wheat straw lignin's structural motifs to fungal degradation. Using 13C IS pyrolysis gas chromatography-mass spectrometry (py-GC-MS), heteronuclear single quantum coherence (HSQC) and 31P NMR spectroscopy, and size-exclusion chromatography (SEC) analyses, it was shown that β-O-4' ethers and the more condensed phenylcoumarans and resinols were equally susceptible to fungal breakdown. Interestingly, for β-O-4' ether substructures, marked cleavage preferences could be observed: β-O-4'-syringyl substructures were degraded more frequently than their β-O-4'-guaiacyl and β-O-4'-tricin analogues. Furthermore, diastereochemistry (threo > erythro) and γ-acylation (γ-OH > γ-acyl) influenced cleavage susceptibility. These results indicate that electron density of the 4'-O-coupled ring and local steric hindrance are important determinants of oxidative β-O-4' ether degradation. Our findings provide novel insight into the delignification mechanisms of C. subvermispora and contribute to improving the valorization of lignocellulosic biomass.