Evaluating the effects of surface O3 on three main food crops across China during 2015-2018

Environ Pollut. 2020 Mar:258:113794. doi: 10.1016/j.envpol.2019.113794. Epub 2019 Dec 16.

Abstract

In order to tackle China's severe air pollution issue, the government has released the "Air Pollution Prevention and Control Action Plan" (known simply as the "Action Plan") since 2013. A recent study reported a decreased trend in PM2.5 concentrations over 2013-2017, but O3 pollution has become more serious. However, the effects of surface O3 on crops are unclear after the implementation of the "Action Plan". Here, we evaluated the potential negative effects of surface O3 on three main food crops (winter wheat, maize and rice) across China during 2015-2018 using nationwide O3 monitoring data and AOT40-yield response functions. Results suggested that mean O3 concentration, AOT40 and relative yield loss in China showed an overall upward trend from 2015 to 2018. During winter wheat, maize, single rice, double-early rice, and double-late rice growing seasons, mean O3 concentration in recent years ranged from 38.6 to 46.9 ppb, 40.2-43.9 ppb, 39.3-42.2 ppb, 33.8-40.0 ppb, and 35.9-39.1 ppb, respectively, and AOT40 mean values ranged from 8.5 to 14.3 ppm h, 10.5-13.4 ppm h, 9.8-11.9 ppm h, 5.2-9.2 ppm h, and 8.0-9.5 ppm h, respectively. O3-induced yield reductions were estimated to range from 20.1 to 33.3% for winter wheat, 5.0-6.3% for maize, 7.3-8.8% for single rice, 3.9-6.8% for double-early rice and 5.9-7.1% for double-late rice. O3-induced production losses for winter wheat, maize, single rice, double-early rice, and double-late rice totaled 39.5-88.2 million metric tons, 12.6-21.0 million metric tons, 9.5-11.3 million metric tons, 1.2-1.8 million metric tons, and 2.2-2.7 million metric tons, respectively, and the corresponding economic losses totaled 14.3-32.0 billion US$, 3.9-6.5 billion US$, 3.9-4.6 billion US$, 0.5-0.7 billion US$, and 0.9-1.1 billion US$, respectively. Our results suggested that the government should take effective measures to reduce O3 pollution and its effects on agricultural production.

Keywords: AOT40; Ground-level ozone; Impact assessment; Relative yield loss.

MeSH terms

  • Air Pollutants / toxicity*
  • Air Pollution / statistics & numerical data
  • China
  • Crops, Agricultural / physiology*
  • Environmental Monitoring
  • Ozone / toxicity*

Substances

  • Air Pollutants
  • Ozone