Ionizing radiation reduces larval brain size by inducing premature differentiation of Drosophila neural stem cells

Biochem Biophys Res Commun. 2020 Mar 12;523(3):555-560. doi: 10.1016/j.bbrc.2019.12.047. Epub 2019 Dec 18.

Abstract

DNA damaging agents, such as ionizing radiation (IR), induce cell cycle arrest, senescence, differentiation, or cell death of stem cells, which may affect tissue homeostasis. The specific response of stem cells upon irradiation seems to vary depending on the cell type and their developmental stages. Drosophila larval brain contains neural stem cells called neuroblasts (NBs) and maintaining an appropriate number of NBs is critical to maintain brain size. Irradiation of larvae at early larval stage results in microcephaly, whereas the DNA damage response of NBs that could explain this small brain size is not clearly understood. We observed that the irradiation of larvae in the second instar retarded brain growth, accompanied by fewer NBs. The IR-induced microcephaly does not seem to result from apoptosis since the irradiated larval brain was not stained with activated Caspase nor was the microcephaly affected by the ectopic expression of the apoptosis inhibitor. When analyzed for the percentage of mitotic cells, irradiated NBs recovered their proliferative potential within 6 h post-irradiation after transient cell cycle arrest. However, IR eventually reduced the proliferation of NBs at later time points and induced the premature differentiation of NBs. In summary, IR-induced microcephaly occurs by NB loss due to premature differentiation, rather than apoptotic cell death.

Keywords: DNA damage response; Drosophila; Ionizing radiation; Microcephaly; Neural stem cell; Premature differentiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / growth & development
  • Brain / radiation effects
  • Drosophila / cytology
  • Drosophila / growth & development
  • Drosophila / radiation effects*
  • Larva / cytology
  • Larva / growth & development
  • Larva / radiation effects
  • Microcephaly / etiology
  • Neural Stem Cells / cytology
  • Neural Stem Cells / radiation effects*
  • Neurogenesis / radiation effects*
  • Organ Size / radiation effects
  • Radiation, Ionizing