Influence of the cofactor structure on the photophysical processes initiating signal transduction in a phototropin-derived LOV domain

J Chem Phys. 2019 Dec 21;151(23):235102. doi: 10.1063/1.5131856.

Abstract

Due to their biological importance, the photochemistry of blue-light photoreceptor proteins has been studied extensively over the last few decades. Most blue-light photoreceptors, such as cryptochromes and phototropins, utilize flavin chromophores as their cofactors. After irradiation with light, the chromophore undergoes electron transfer with nearby redox-active amino-acid residues within the protein, whereby this first step of signal transduction may be initiated either from the flavin's excited singlet or triplet state. Despite the collective effort of theoreticians and experimentalists to characterize and understand the photochemistry of flavoproteins, the mechanistic details of the excited state processes initiating signal transduction are yet to be revealed. Here, we use a light-oxygen-voltage-sensing domain from Avena sativa phototropin to get additional insight into the excited state photochemistry of flavoproteins. The influence of structural variations of the cofactor flavin mononucleotide (FMN) is explored by varying the methyl substitution pattern in positions 7 and 8 of the flavin core. The photophysical properties of the FMN derivatives, in the absence and presence of the protein environment, are investigated by UV-vis absorption, fluorescence, and electron paramagnetic resonance spectroscopies as well as cyclic voltammetry. The comparison of the properties of the modified flavin cofactors with those of FMN shows that the rates of the different excited state reactions, and therefore also the singlet/triplet yields, can be modulated substantially by only minor structural modifications of the flavin core.