The Bovine Antimicrobial Peptide Lactoferricin Interacts with Polysialic Acid without Loss of Its Antimicrobial Activity against Escherichia coli

Animals (Basel). 2019 Dec 18;10(1):1. doi: 10.3390/ani10010001.

Abstract

The lactoferrin-derived peptide lactoferricin (LFcin) belongs to the family of antimicrobial peptides, and its bovine form has already been successfully applied to counteract enterohemorrhagic Escherichia coli (EHEC) infection. Recently, it was described that LFcin interacts with the sugar polymer polysialic acid (polySia) and that the binding of lactoferrin to polySia is mediated by LFcin, included in the N-terminal domain of lactoferrin. For this reason, the impact of polySia on the antimicrobial activity of bovine LFcin was investigated. Initially, the interaction of LFcin was characterized in more detail by native agarose gel electrophoresis, demonstrating that a chain length of 10 sialic acid residues was necessary to bind LFcin, whereas approximately twice-as-long chains were needed to detect binding of lactoferrin. Remarkably, the binding of polySia showed, independently of the chain length, no impact on the antimicrobial effects of LFcin. Thus, LFcin binds polySia without loss of its protective activity as an antimicrobial peptide.

Keywords: antimicrobial peptides; innate immune system; lactoferricin; lactoferrin; polysialic acid; sialic acids.