Lacustrine micro-ecosystem responses to the inflow discharge gradient of water diversion from Yangtze River to Lake Taihu

Environ Geochem Health. 2020 Mar;42(3):1021-1032. doi: 10.1007/s10653-019-00483-4. Epub 2019 Dec 20.

Abstract

Water diversion project is always taken as the emergency and effective engineering measure to deal with the cyanobacterial blooms in eutrophic lakes. The inflow discharge and duration are the critical parameters influencing the effects and costs of the water diversion activities. Due to the impacts of meteorological and hydrological factors such as precipitation and wind-wave currents, the environmental influence of water diversion on shallow eutrophic lakes is always unclear. To explore the quantitative relationships among inflow discharges, duration and ecological parameters in water-receiving lakes, the typical water diversion engineering-Water Diversion Project from Yangtze River to Lake Taihu was taken as an example and the mesocosm experiment modeling the micro-ecosystem of the water-receiving Meiliang Bay in Lake Taihu was conducted with five groups of inflow discharges according to the practical discharges of the main river channel-Wangyu River. Each micro-ecosystem had a volume of 15 L and was studied for a period of 30 days (25 days for the water diversion period and 5 days for the stop period). The results showed that the inflow discharges had different extents of impact on the physicochemical and biological characteristics of the micro-ecosystems. The concentrations of total dissolved solids, total nitrogen, nitrate, active silicate and bacterial abundance in the experimental groups (inflow discharges > 100 m3/s) were all decreased compared with the control group, with the lowest values in the period of 10-15 days. During the stop period, the concentrations of sensitive biotic and abiotic parameters were all recovered with different extents and different from the initial state of this experiment, which revealed that the effects of the short-term water diversion on lake ecosystems were resilient and durable. There were quantitative relationships among the inflow discharge, content interpolation and variation in water nutrients, with different relationships in different periods of the water diversion. The influence of water diversion on lake ecosystems was not only related to the direct impacts of allochthonous inputs, but also with the indirect effects of internal habitat variation in lakes.

Keywords: Bacterial abundance; Inflow discharge; Physicochemical parameters; Quantitative relationship; Water diversion.

MeSH terms

  • China
  • Ecosystem
  • Eutrophication
  • Geologic Sediments
  • Harmful Algal Bloom
  • Lakes* / chemistry
  • Nitrogen / analysis
  • Rivers* / chemistry
  • Silicates / analysis

Substances

  • Silicates
  • Nitrogen