Solar-Blind UV Photodetector Based on Atomic Layer-Deposited Cu2O and Nanomembrane β-Ga2O3 pn Oxide Heterojunction

ACS Omega. 2019 Nov 22;4(24):20756-20761. doi: 10.1021/acsomega.9b03149. eCollection 2019 Dec 10.

Abstract

Herein, we present a solar-blind ultraviolet photodetector realized using atomic layer-deposited p-type cuprous oxide (Cu2O) underneath a mechanically exfoliated n-type β-gallium oxide (β-Ga2O3) nanomembrane. The atomic layer deposition process of the Cu2O film applies bis(N,N'-di-secbutylacetamidinato)dicopper(I) [Cu(5Bu-Me-amd)]2 as a novel Cu precursor and water vapor as an oxidant. The exfoliated β-Ga2O3 nanomembrane was transferred to the top of the Cu2O layer surface to realize a unique oxide pn heterojunction, which is not easy to realize by conventional oxide epitaxy techniques. The current-voltage (I-V) characteristics of the fabricated pn heterojunction diode show the typical rectifying behavior. The fabricated Cu2O/β-Ga2O3 photodetector achieves sensitive detection of current at the picoampere scale in the reverse mode. This work provides a new approach to integrate all oxide heterojunctions using membrane transfer and bonding techniques, which goes beyond the limitation of conventional heteroepitaxy.