Reduced visual evoked potential amplitude in autism spectrum disorder, a variability effect?

Transl Psychiatry. 2019 Dec 18;9(1):341. doi: 10.1038/s41398-019-0672-6.

Abstract

Atypical sensory behaviours represent a core symptom of autism spectrum disorder (ASD). Investigating early visual processing is crucial to deepen our understanding of higher-level processes. Visual evoked potentials (VEPs) to pattern-reversal checkerboards were recorded in ASD children and age-matched controls. Peak analysis of the P100 component and two types of single-trial analyses were carried out. P100 amplitude was reduced in the ASD group, consistent with previous reports. The analysis of the proportion of trials with a positive activity in the latency range of the P100, measuring inter-trial (in)consistency, allowed identifying two subgroups of ASD participants: the first group, as control children, showed a high inter-trial consistency, whereas the other group showed an inter-trial inconsistency. Analysis of median absolute deviation of single-trial P100 (st-P100) latencies revealed an increased latency variability in the ASD group. Both single-trial analyses revealed increased variability in a subset of children with ASD. To control for this variability, VEPs were reconstructed by including only positive trials or trials with homogeneous st-P100 latencies. These control analyses abolished group differences, confirming that the reduced P100 amplitude results from increased inter-trial variability in ASD. This increased variability in ASD supports the neural noise theory. The existence of subgroups in ASD suggests that the neural response variability is not a genuine characteristic of the entire autistic spectrum, but rather characterized subgroups of children. Exploring the relationship between sensory responsiveness and inter-trial variability could provide more precise bioclinical profiles in children with ASD, and complete the functional diagnostic crucial for the development of individualized therapeutical projects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autism Spectrum Disorder / physiopathology*
  • Child
  • Child, Preschool
  • Electroencephalography
  • Evoked Potentials, Visual / physiology*
  • Female
  • Humans
  • Male
  • Pattern Recognition, Visual / physiology*