Compact Assembly and Programmable Integration of Supercapacitors

Adv Mater. 2020 Feb;32(6):e1907005. doi: 10.1002/adma.201907005. Epub 2019 Dec 18.

Abstract

Microsized supercapacitors (mSCs) with small volume, rapid charge-discharge rate, and ultralong cyclic lifetime are urgently needed to meet the demand of miniaturized portable electronic devices. A versatile self-shrinkage assembling (SSA) strategy to directly construct the compact mSCs (CmSCs) from hydrogels of reduced graphene oxide is reported. A single CmSC is only 0.0023 cm3 in volume, which is significantly smaller than most reported mSCs in fiber/yarn and planar interdigital forms. It exhibits a high capacitance of up to 68.3 F cm-3 and a superior cycling stability with 98% capacitance retention after 25 000 cycles. Most importantly, the SSA technique enables the CmSC as the building block to realize arbitrary, programmable, and multi-dimensional integration for adaptable and complicated power systems. By design on mortise and tenon joint connection, autologous integrated 3D interdigital CmSCs are fabricated in a self-holding-on manner, which thus dramatically reduces the whole device volume to achieve the high-performance capacitive behavior. Consequently, the SSA technique offers a universal and versatile approach for large-scale on-demand integration of mSCs as flexible and transformable power sources.

Keywords: high volumetric capacitance; large-scale integration; microsized supercapacitors; mortise and tenon joints; self-shrinkage assembly.