Anti-Osteoporotic Activity of an Edible Traditional Chinese Medicine Cistanche deserticola on Bone Metabolism of Ovariectomized Rats Through RANKL/RANK/TRAF6-Mediated Signaling Pathways

Front Pharmacol. 2019 Nov 26:10:1412. doi: 10.3389/fphar.2019.01412. eCollection 2019.

Abstract

Given the limitations of existing therapeutic agents for treatment of postmenopausal osteoporosis, there still remains a need for more options with both efficacy and less adverse effects. Cistanche deserticola Y. C. Ma is known as a popular tonic herb traditionally used to treatment deficiency of kidney energy including muscle weakness in minority area of Asian counties. Based on the theory of "kidney dominate bone," an ovariectomized (OVX) rat model of postmenopausal osteoporosis was used to evaluate the therapeutic effect of C. deserticola extract (CDE) on bone loss. Forty eight female Sprague-Dawley rats, aged about 12 weeks, were randomly assigned into six groups including sham group orally administrated with 0.5% carboxymethyl cellulose sodium (CMC-Na) (sham), positive group treated with 1 mg/kg of estradiol valerate (EV), low, moderate, and high dosage groups orally administrated with 200, 400, and 800 mg/kg/day of CDE, respectively. After 3 months of continuous intervention, CDE exhibited significant anti-osteoporotic activity evidenced by the enhanced total bone mineral density, ameliorated bone microarchitecture; increased alkaline phosphatase activity; decreased deoxypyridinoline, cathepsin K, tartrate-resistant acid phosphatase, and malondialdehyde levels; whereas the body, uterus, and vagina weights in OVX rats were not influenced by CDE intervention. In addition, a seemed contradictory phenomenon on levels of calcium and phosphorus between OVX and sham rats were observed and elucidated. Mechanistically, CDE significantly down-regulated the levels of TRAF6, RANKL, RANK, NF-κB, IKKβ, NFAT2, and up-regulated the phosphatidylinositol 3-kinase (PI3K), AKT, osteoprotegerin, and c-Fos expressions, which implied CDE could suppress RANKL/RANK-induced activation of downstream NF-κB and PI3K/AKT pathways, and ultimately, preventing activity of the key osteoclastogenic proteins NFAT2 and c-Fos. All of the data suggested CDE possessed potential anti-osteoporotic activity and this effect was, at least in part, involved in modulation of RANKL/RANK/TRAF6-mediated NF-κB and PI3K/AKT signaling as well as c-Fos and NFAT2 levels. Therefore, CDE may represent a useful promising remedy candidate for treatment of postmenopausal osteoporosis.

Keywords: Cistanche deserticola; RANK; RANKL; TRAF6; antiosteoporotic.