Optimization of sapphire capillary needles for interstitial and percutaneous laser medicine

J Biomed Opt. 2019 Dec;24(12):1-7. doi: 10.1117/1.JBO.24.12.128001.

Abstract

Sapphire capillary needles fabricated by edge-defined film-fed growth (EFG) technique hold strong potential in laser thermotherapy and photodynamic therapy, thanks to the advanced physical properties of sapphire. These needles feature an as-grown optical quality, their length is tens of centimeters, and they contain internal capillary channels, with open or closed ends. They can serve as optically transparent bearing elements with optical fibers introduced into their capillary channels in order to deliver laser radiation to biological tissues for therapeutic and, in some cases, diagnostic purposes. A potential advantage of the EFG-grown sapphire needles is associated with an ability to form the tip of a needle with complex geometry, either as-grown or mechanically treated, aimed at controlling the output radiation pattern. In order to examine a potential of the radiation pattern shaping, we present a set of fabricated sapphire needles with different tips. We studied the radiation patterns formed at the output of these needles using a He-Ne laser as a light source, and used intralipid-based tissue phantoms to proof the concept experimentally and the Monte-Carlo modeling to proof it numerically. The observed results demonstrate a good agreement between the numerical and experimental data and reveal an ability to control within wide limits the direction of tissue exposure to light and the amount of exposed tissue by managing the sapphire needle tip geometry.

Keywords: edge-defined film-fed growth; laser thermal therapy; medical instruments; medical needles; photodynamic therapy; sapphire shaped crystals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aluminum Oxide*
  • Equipment Design
  • Laser Therapy / instrumentation*
  • Needles*
  • Phantoms, Imaging
  • Photochemotherapy / instrumentation

Substances

  • Aluminum Oxide