Surface Temperature Simulation of Lunar Dayside and Its Geological Applications: A Case in Sinus Iridum

Sensors (Basel). 2019 Dec 15;19(24):5545. doi: 10.3390/s19245545.

Abstract

Lunar surface temperature is one of the fundamental thermophysical parameters of the lunar regolith, which is of great significance to the interpretation of remote-sensing thermal data. In this study, a daytime surface temperature model is established focusing on the lunar superficial layer with high spatial-temporal resolution. The physical parameters at the time of interest are adopted, including effective solar irradiance, lunar libration, large-scale topographic shading, and surrounding diffuse reflection. Thereafter, the 1/64° temperature distributions at five local times are quantitatively generated and analyzed in Sinus Iridum. Also, combined with Chang'E-2 microwave radiometer (CELMS) data and Diviner thermal infrared (TIR) data, the spectral emissivity distributions are estimated as a potential geological application of the simulated surface temperature. The results are as follows: (1) daytime surface temperature in Sinus Iridum is significantly affected by the local topography and observation time, and the influence of diffuse reflection energy is obvious; (2) the emissivity distributions provide a new way to understand the thermophysical properties difference of lunar regolith at different depths; (3) the influence of lunar orbiting revolution and precession on surface temperature should be analyzed carefully, which shows the importance of using the parameters at the time of interest.

Keywords: Sinus Iridum; geological application; lunar surface temperature; remote-sensing data.