Development of Marine Antifouling Epoxy Coating Enhanced with Clay Nanotubes

Materials (Basel). 2019 Dec 13;12(24):4195. doi: 10.3390/ma12244195.

Abstract

An antifouling epoxy resin doped with natural clay nanotubes that are loaded with biocide or silver allowed extended protection against the proliferation of marine microorganisms. Compared to the 2-3 months of protection with antifoulant dichlorooctylisothiazolone (DCOIT) directly admixed into epoxy resin, the DCOIT release time of the halloysite formulations was extended to 12 months by incorporating biocide-loaded nanoclay in the polymer matrix. The protective properties of the epoxy-halloysite nanocomposites showed much less adhesion and proliferation of marine bacteria Vibrio natriegens on the resin surface after a two-month exposure to seawater than the coating formulations directly doped with non-encapsulated DCOIT. The coating formulation protection efficiency was further confirmed by twelve-month shallow field tests in the South China Sea. Replacing 2 wt.% biocide in the traditional formula with DCOIT-loaded natural environmentally friendly halloysite clay drastically improved the antifouling properties of the epoxy coating, promising scalable applications in protective marine coating. The antifouling property of epoxy resin was enhanced with silver particles synthesized on halloysite nanotubes. A natural mixture of MnO particles and halloysite could also be used as a nonbiocide additive to marine coating. The short-term White Sea water test of epoxy coating with 5% of Ag-halloysite composite of MnO-halloysite natural mixture showed no visible fouling.

Keywords: antifoulant encapsulation; clay nanotubes; sustained protection.