Predicting Abundances of Aedes mcintoshi, a primary Rift Valley fever virus mosquito vector

PLoS One. 2019 Dec 17;14(12):e0226617. doi: 10.1371/journal.pone.0226617. eCollection 2019.

Abstract

Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic arbovirus with important livestock and human health, and economic consequences across Africa and the Arabian Peninsula. Climate and vegetation monitoring guide RVFV forecasting models and early warning systems; however, these approaches make monthly predictions and a need exists to predict primary vector abundances at finer temporal scales. In Kenya, an important primary RVFV vector is the mosquito Aedes mcintoshi. We used a zero-inflated negative binomial regression and multimodel averaging approach with georeferenced Ae. mcintoshi mosquito counts and remotely sensed climate and topographic variables to predict where and when abundances would be high in Kenya and western Somalia. The data supported a positive effect on abundance of minimum wetness index values within 500 m of a sampling site, cumulative precipitation values 0 to 14 days prior to sampling, and elevated land surface temperature values ~3 weeks prior to sampling. The probability of structural zero counts of mosquitoes increased as percentage clay in the soil decreased. Weekly retrospective predictions for unsampled locations across the study area between 1 September and 25 January from 2002 to 2016 predicted high abundances prior to RVFV outbreaks in multiple foci during the 2006-2007 epizootic, except for two districts in Kenya. Additionally, model predictions supported the possibility of high Ae. mcintoshi abundances in Somalia, independent of Kenya. Model-predicted abundances were low during the 2015-2016 period when documented outbreaks did not occur, although several surveillance systems issued warnings. Model predictions prior to the 2018 RVFV outbreak indicated elevated abundances in Wajir County, Kenya, along the border with Somalia, but RVFV activity occurred west of the focus of predicted high Ae. mcintoshi abundances.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aedes*
  • Animals
  • Climate
  • Disease Outbreaks / statistics & numerical data*
  • Humans
  • Kenya / epidemiology
  • Models, Theoretical*
  • Mosquito Vectors / virology*
  • Population Density
  • Rift Valley Fever / epidemiology*
  • Rift Valley fever virus*
  • Somalia

Grants and funding

This work received funding from: James S. McDonnell Foundation to Dr. Daniel C Reuman, National Science Foundation 1442595 to Dr. Daniel C Reuman, Florida Department of Agriculture and Consumer Services 02636 to Dr. Lindsay P Campbell, California Department of Fish and Wildlife Delta Science Program to Dr. Daniel C Reuman, National Science Foundation 1714195 to Dr. Daniel C Reuman, Defense Health Agency P0072_19_NS to Dr. Assaf Anyamba.