Stochastic economic analysis of coal-alternative fuel production from municipal solid wastes employing hydrothermal carbonization in Zimbabwe

Sci Total Environ. 2020 May 10:716:135337. doi: 10.1016/j.scitotenv.2019.135337. Epub 2019 Nov 23.

Abstract

Hydrothermal carbonization (HTC) is a promising technology for converting high moisture municipal solid waste (MSW) to a safe low-chlorine hydrochar. The key objective is to assess the economic viability of an HTC based MSW management system in Zimbabwe. Previous studies have only used deterministic estimates of hydrochar production costs disregarding uncertainties in their model parameters. Herein, a probabilistic economic analysis is introduced to quantify the uncertainty concerning costs. The goal is to determine factors that will consolidate the venture to achieve a certain level of return. The effectiveness of different investment strategies, namely, a government or private sector-run operation will be tested using Monte Carlo simulations. Results indicate a 55% and 18% probability for a positive Net Present Value (NPV) for a state-run and private operation respectively. A specific investment cost of US$54 - 67 per Mg of MSW treated, a return on investment (ROI) of 5.4-29.0% and internal rate of return (IRR) of 5.2-22.9% can be expected if the project is undertaken by government. The private sector can expect an ROI of -0.8-18.2% at a 90% confidence level and a lower IRR of -2.1-16.2% from US$57 - 71 per Mg of MSW invested. Contingency costs are US$25 per Mg and US$38 per Mg of MSW for the government and private sector respectively at a 100% confidence interval. A 70% rise in collection tariffs or a minimum selling price of US$91/Mg of the hydrochar would ensure a positive NPV for the government-run operation.