Anti-Biofilm Effects of Synthetic Antimicrobial Peptides Against Drug-Resistant Pseudomonas aeruginosa and Staphylococcus aureus Planktonic Cells and Biofilm

Molecules. 2019 Dec 12;24(24):4560. doi: 10.3390/molecules24244560.

Abstract

Biofilm-associated infections are difficult to manage or treat as biofilms or biofilm-embedded bacteria are difficult to eradicate. Antimicrobial peptides have gained increasing attention as a possible alternative to conventional drugs to combat drug-resistant microorganisms because they inhibit the growth of planktonic bacteria by disrupting the cytoplasmic membrane. The current study investigated the effects of synthetic peptides (PS1-2, PS1-5, and PS1-6) and conventional antibiotics on the growth, biofilm formation, and biofilm reduction of drug-resistant Pseudomonas aeruginosa and Staphylococcus aureus. The effects of PS1-2, PS1-5, and PS1-6 were also tested in vivo using a mouse model. All peptides inhibited planktonic cell growth and biofilm formation in a dose-dependent manner. They also reduced preformed biofilm masses by removing the carbohydrates, extracellular DNA, and lipids that comprised extracellular polymeric substances (EPSs) but did not affect proteins. In vivo, PS1-2 showed the greatest efficacy against preformed biofilms with no cytotoxicity. Our findings indicate that the PS1-2 peptide has potential as a next-generation therapeutic drug to overcome multidrug resistance and to regulate inflammatory response in biofilm-associated infections.

Keywords: biofilm degradation; biofilm inhibition; drug-resistant bacteria; extracellular polymeric substances; synthetic antimicrobial peptide.

MeSH terms

  • Anti-Infective Agents* / chemical synthesis
  • Anti-Infective Agents* / chemistry
  • Anti-Infective Agents* / pharmacology
  • Antimicrobial Cationic Peptides* / chemical synthesis
  • Antimicrobial Cationic Peptides* / chemistry
  • Antimicrobial Cationic Peptides* / pharmacology
  • Biofilms / drug effects*
  • Biofilms / growth & development
  • Drug Resistance, Bacterial / drug effects*
  • Plankton / physiology*
  • Pseudomonas aeruginosa / physiology*
  • Staphylococcus aureus / physiology*

Substances

  • Anti-Infective Agents
  • Antimicrobial Cationic Peptides