The Aqueous Extract of Radio-Resistant Deinococcus actinosclerus BM2T Suppresses Lipopolysaccharide-Mediated Inflammation in RAW264.7 Cells

J Microbiol Biotechnol. 2020 Apr 28;30(4):583-590. doi: 10.4014/jmb.1911.11003.

Abstract

Deinococcus actinosclerus BM2T (GenBank: KT448814) is a radio-resistant bacterium that is newly isolated from the soil of a rocky hillside in Seoul. As an extremophile, D. actinosclerus BM2T may possess anti-inflammatory properties that may be beneficial to human health. In this study, we evaluated the anti-inflammatory effects of BM2U, an aqueous extract of D. actinosclerus BM2T, on lipopolysaccharide (LPS)-mediated inflammatory responses in RAW264.7 macrophage cells. BM2U showed antioxidant capacity, as determined by the DPPH radical scavenging (IC50 = 349.3 μg/ml) and ORAC (IC50 = 50.24 μg/ml) assays. At 20 μg/ml, BM2U induced a significant increase in heme oxygenase-1 (HO-1) expression (p < 0.05). BM2U treatment (0.2-20 μg/ml) significantly suppressed LPS-induced increase in the mRNA expression of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 (p < 0.05). BM2U treatment also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. BM2U treatment also inhibited the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs): JNK, ERK, and p-38 (p < 0.05). Collectively, BM2U exhibited anti-inflammatory potential that can be exploited in attenuating inflammatory responses.

Keywords: Deinococcus actinosclerus BM2T; anti-inflammation; cytokines; lipopolysaccharide; macrophages.

MeSH terms

  • Animals
  • Anti-Inflammatory Agents / chemistry
  • Anti-Inflammatory Agents / pharmacology*
  • Antioxidants / pharmacology
  • Cyclooxygenase 2 / genetics
  • Cytokines / genetics
  • Deinococcus / chemistry*
  • Deinococcus / isolation & purification
  • Gene Expression / drug effects
  • Inflammation / chemically induced
  • Inflammation / drug therapy
  • Inflammation / metabolism
  • Inflammation Mediators / metabolism
  • Lipopolysaccharides / toxicity*
  • Macrophages / drug effects
  • Macrophages / metabolism
  • Mice
  • Mitogen-Activated Protein Kinases / metabolism
  • NF-kappa B / metabolism
  • Nitric Oxide Synthase Type II / genetics
  • RAW 264.7 Cells
  • Signal Transduction / drug effects

Substances

  • Anti-Inflammatory Agents
  • Antioxidants
  • Cytokines
  • Inflammation Mediators
  • Lipopolysaccharides
  • NF-kappa B
  • Nitric Oxide Synthase Type II
  • Nos2 protein, mouse
  • Cyclooxygenase 2
  • Mitogen-Activated Protein Kinases

Supplementary concepts

  • Deinococcus actinosclerus