From exotic to invasive in record time: The extreme impact of Rugulopteryx okamurae (Dictyotales, Ochrophyta) in the strait of Gibraltar

Sci Total Environ. 2020 Feb 20:704:135408. doi: 10.1016/j.scitotenv.2019.135408. Epub 2019 Nov 23.

Abstract

In 2015, the exotic seaweed Rugulopteryx okamurae was detected for the first time on the south side of the Strait of Gibraltar, in Ceuta (northern Africa). This highly sensitive area is ideal for monitoring local environmental impacts arising from global warming, as well as the intrusion of alien species. Within one year, R. okamurae became an invasive species with an overflowing competitive capacity and growth. In 2015, more than 5000 tons of upstream biomass was extracted from beaches in Ceuta, and it has since spread irrepressibly on rocky illuminated bottoms of the subtidal zone to a maximum observed depth of 40 m. The highest coverage (80-90%) of R. okamurae in Ceuta was observed between 10 and 20 m depth in illuminated habitats, where it was having a severe impact on local benthic communities which were displaced. Between 5 and 30 m depth, coverage of R. okamurae exceeded 70% over a wide variety of substrate types. A submarine sentinel sessile bioindicators permanent quadrats (SBPQ) station installed in 2013 on poorly lit, vertical, and shady substrate in the El Estrecho Natural Park, on the north side of the Strait of Gibraltar (Tarifa), detected the presence of R. okamurae in July 2016 and recorded the subsequent increase in coverage. These findings reveal the useful role of this type of monitoring SBPQ sentinel station for the detection of impacts and exotic species in marine protected areas, and for the monitoring of global warming based on indicator species. We conclude that the catastrophic bloom of R. okamurae exhibited an initial geographical expansion (2015-2017) to the northern coastal area of the Strait of Gibraltar (Tarifa-Gibraltar) and subsequent extension in the south of the Iberian Peninsula, towards the Atlantic coast (2018) and the Mediterranean coast (2019). This bloom could have been associated with the temperature peak in July 2015 and was thus possibly linked to global warming.

Keywords: Bioinvasion; Ecological impact; Global warming; Rugulopteryx; SBPQ method; Strait of Gibraltar.

MeSH terms

  • Ecosystem
  • Environmental Monitoring*
  • Gibraltar
  • Introduced Species*
  • Phaeophyceae*