Identification of Temperature-Induced Deformation for HSR Slab Track Using Track Geometry Measurement Data

Sensors (Basel). 2019 Dec 10;19(24):5446. doi: 10.3390/s19245446.

Abstract

Slab track is widely used in many newly built high-speed rail (HSR) lines as it offers many advantages over ballasted tracks. However, in actual operation, slab tracks are subjected to operational and environmental factors, and structural damages are frequently reported. One of the most critical problems is temperature-induced slab-warping deformation (SWD) which can jeopardize the safety of train operation. This paper proposes an automatic slab deformation detection method in light of the track geometry measurement data, which are collected by high-speed track geometry car (HSTGC). The characteristic of track vertical irregularity is first analyzed in both time and frequency domain, and the feature of slab-warping phenomenon is observed. To quantify the severity of SWD, a slab-warping index (SWI) is established based on warping-sensitive feature extraction using discrete wavelet transform (DWT). The performance of the proposed algorithm is verified against visual inspection recorded on four sections of China HSR line, which are constructed with the China Railway Track System II (CRTSII) slab track. The results show that among the 24,806 slabs being assessed, over 94% of the slabs with warping deformation can be successfully identified by the proposed detection method. This study is expected to provide guidance for efficiently detecting and locating slab track defects, taking advantage of the massive track inspection data.

Keywords: high-speed rail (HSR) slab track; slab-warping deformation (SWD); track geometry data; wavelet-based feature extraction.