Functional brain networks involved in lexical decision

Brain Cogn. 2020 Feb:138:103631. doi: 10.1016/j.bandc.2019.103631. Epub 2019 Dec 10.

Abstract

Functional magnetic resonance imaging (fMRI)5 studies on lexical decision (LD)6 attempting to isolate the brain network underlying access to lexical representations can be confounded by attentional and response processes. However, manipulating the "wordlikeness" of the LD stimuli can facilitate functional interpretation of each emerging brain network, providing principles for separation of attentional demand from linguistic processing. This is because activation of difficult-to-access lexical representations (for obscure real words), and avoidance of interfering word properties (for wordlike non-words), are both generally attentionally demanding. Therefore, congruent patterns of activation would be predicted for general-attention-responsive networks, but opposing patterns for language-responsive networks. 59 healthy adults performed a LD task, and multidimensional functional connectivity analysis was used to extract three functional brain networks. A linguistic processing network (LPN) was separated from attention/response networks anatomically (LPN included Broca's and Wernicke's areas), but also temporally by showing reduced activation for the most attentionally demanding condition (i.e., wordlike non-words). This demonstrated that during LD in fMRI a network involved in linguistic processing can be disentangled from attention- and response-specific networks, using a combination of experimental design and multidimensional analysis methods.

Keywords: Constrained principal component analysis; Functional connectivity; Functional magnetic resonance imaging; Language network; Lexical decision.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cerebral Cortex / diagnostic imaging
  • Cerebral Cortex / physiology*
  • Connectome*
  • Decision Making / physiology*
  • Female
  • Humans
  • Language*
  • Magnetic Resonance Imaging
  • Male
  • Nerve Net / diagnostic imaging
  • Nerve Net / physiology*
  • Young Adult

Grants and funding