Cotrimoxazole Prophylaxis Increases Resistance Gene Prevalence and α-Diversity but Decreases β-Diversity in the Gut Microbiome of Human Immunodeficiency Virus-Exposed, Uninfected Infants

Clin Infect Dis. 2020 Dec 31;71(11):2858-2868. doi: 10.1093/cid/ciz1186.

Abstract

Background: Prophylactic cotrimoxazole treatment is recommended in human immunodeficiency virus (HIV)-exposed, uninfected (HEU) infants, but the effects of this treatment on developing HEU infant gut microbiotas and resistomes are largely undefined.

Methods: We analyzed whole-metagenome sequencing data from 163 longitudinally collected stool samples from 63 HEU infants randomized to receive (n = 34; CTX-T) or to not receive (n = 29; CTX-N) prophylactic cotrimoxazole treatment. We generated taxonomic, functional pathway, and resistance gene profiles for each sample and compared microbiome signatures between the CTX-T and CTX-N infants.

Results: Metagenomic analysis did not reveal significant differences in taxonomic or functional pathway α-diversity between CTX-T and CTX-N infants. In contrast, resistance gene prevalence (P = .00719) and α-diversity (P = .0045) increased in CTX-T infants. These differences increased over time for both resistance gene prevalence measured by log-normalized abundance (4-month mean, 0.71 [95% confidence interval {CI}, .2-1.2] and 6-month mean, 0.85 [95% CI, .1-1.7]) and α-diversity (P = .0045). Unlike α-diversity, interindividual gut microbiome taxonomic (mean, -0.11 [95% CI, -.15 to -.077]), functional taxonomic (mean, -0.050 [95% CI, -.084 to -.017]), and resistance gene (mean, -0.13 [95% CI, -.17 to -.099]) β-diversity decreased in CTX-T infants compared with CTX-N infants. These results are consistent with persistent antibiotic selection pressure.

Conclusions: Cotrimoxazole prophylaxis in HEU infants decreased gut microbiome β-diversity and increased antibiotic resistance gene α-diversity and prevalence. Antibiotic resistance is a growing threat, especially in low- and middle-income countries where the higher perinatal HIV exposure rates result in cotrimoxazole prophylaxis. Understanding effects from current HEU infant antibiotic prophylaxis guidelines will inform guideline revisions and efforts to reduce increasing antibiotic resistance.

Keywords: HIV-exposed; antibiotic resistance; cotrimoxazole prophylaxis; microbiome; uninfected infant.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Female
  • Gastrointestinal Microbiome* / genetics
  • HIV
  • HIV Infections* / drug therapy
  • Humans
  • Infant
  • Pregnancy
  • Prevalence
  • Trimethoprim, Sulfamethoxazole Drug Combination / therapeutic use

Substances

  • Trimethoprim, Sulfamethoxazole Drug Combination