Controllable Si-C Bond Activation Enables Stereocontrol in the Palladium-Catalyzed [4+2] Annulation of Cyclopropenes with Benzosilacyclobutanes

Angew Chem Int Ed Engl. 2020 Jan 7;59(2):790-797. doi: 10.1002/anie.201913060. Epub 2019 Dec 12.

Abstract

A novel and unusual palladium-catalyzed [4+2] annulation of cyclopropenes with benzosilacyclobutanes is reported. This reaction occurred through chemoselective Si-C(sp2 ) bond activation in synergy with ring expansion/insertion of cyclopropenes to form new C(sp2 )-C(sp3 ) and Si-C(sp3 ) bonds. An array of previously elusive bicyclic skeleton with high strain, silabicyclo[4.1.0]heptanes, were formed in good yields with excellent diastereoselectivity under mild conditions. An asymmetric version of the reaction with a chiral phosphoramidite ligand furnished a variety of chiral bicyclic silaheterocycle derivatives with good enantioselectivity (up to 95.5:4.5 er). Owing to the mild reaction conditions, the good stereoselectivity profile, and the ready availability of the functionalized precursors, this process constitutes a useful and straightforward strategy for the synthesis of densely functionalized silacycles.

Keywords: Si−C bond activation; palladium; ring expansion; silacycles; strained molecules.