Cellular hypoxia promotes osteogenic differentiation of mesenchymal stem cells and bone defect healing via STAT3 signaling

Cell Mol Biol Lett. 2019 Dec 3:24:64. doi: 10.1186/s11658-019-0191-8. eCollection 2019.

Abstract

Background: Hypoxia in the vicinity of bone defects triggers the osteogenic differentiation of precursor cells and promotes healing. The activation of STAT3 signaling in mesenchymal stem cells (MSCs) has similarly been reported to mediate bone regeneration. However, the interaction between hypoxia and STAT3 signaling in the osteogenic differentiation of precursor cells during bone defect healing is still unknown.

Methods: In this study, we assessed the impact of different durations of CoCl2-induced cellular hypoxia on the osteogenic differentiation of MSCs. Role of STAT3 signaling on hypoxia induced osteogenic differentiation was analyzed both in vitro and in vivo. The interaction between cellular hypoxia and STAT3 signaling in vivo was investigated in a mouse femoral bone defect model.

Results: The peak osteogenic differentiation and expression of vascular endothelial growth factor (VEGF) occurred after 3 days of hypoxia. Inhibiting STAT3 reversed this effect. Hypoxia enhanced the expression of hypoxia-inducible factor 1-alpha (HIF-1α) and STAT3 phosphorylation in MSCs. Histology and μ-CT results showed that CoCl2 treatment enhanced bone defect healing. Inhibiting STAT3 reduced this effect. Immunohistochemistry results showed that CoCl2 treatment enhanced Hif-1α, ALP and pSTAT3 expression in cells present in the bone defect area and that inhibiting STAT3 reduced this effect.

Conclusions: The in vitro study revealed that the duration of hypoxia is crucial for osteogenic differentiation of precursor cells. The results from both the in vitro and in vivo studies show the role of STAT3 signaling in hypoxia-induced osteogenic differentiation of precursor cells and bone defect healing.

Keywords: Bone defect healing; Cellular hypoxia; Mesenchymal stem cells, STAT3-signaling; Osteogenic differentiation.

MeSH terms

  • Alkaline Phosphatase / genetics
  • Alkaline Phosphatase / metabolism
  • Animals
  • Bone Marrow Cells / cytology
  • Bone Marrow Cells / drug effects
  • Bone Marrow Cells / metabolism
  • Bone Regeneration / genetics*
  • Cell Differentiation
  • Cell Hypoxia / genetics
  • Cobalt / pharmacology
  • Femur / cytology
  • Femur / metabolism
  • Gene Expression Regulation
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Male
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Osteoblasts / cytology
  • Osteoblasts / drug effects
  • Osteoblasts / metabolism
  • Osteogenesis / genetics
  • Phosphorylation
  • Primary Cell Culture
  • STAT3 Transcription Factor / genetics*
  • STAT3 Transcription Factor / metabolism
  • Signal Transduction*
  • Vascular Endothelial Growth Factor A / genetics
  • Vascular Endothelial Growth Factor A / metabolism
  • Wound Healing / genetics*

Substances

  • Hif1a protein, mouse
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • STAT3 Transcription Factor
  • Stat3 protein, mouse
  • Vascular Endothelial Growth Factor A
  • vascular endothelial growth factor A, mouse
  • Cobalt
  • Alkaline Phosphatase
  • cobaltous chloride