Arabidopsis WRKY53, a Node of Multi-Layer Regulation in the Network of Senescence

Plants (Basel). 2019 Dec 6;8(12):578. doi: 10.3390/plants8120578.

Abstract

Leaf senescence is an integral part of plant development aiming at the remobilization of nutrients and minerals out of the senescing tissue into developing parts of the plant. Sequential as well as monocarpic senescence maximize the usage of nitrogen, mineral, and carbon resources for plant growth and the sake of the next generation. However, stress-induced premature senescence functions as an exit strategy to guarantee offspring under long-lasting unfavorable conditions. In order to coordinate this complex developmental program with all kinds of environmental input signals, complex regulatory cues have to be in place. Major changes in the transcriptome imply important roles for transcription factors. Among all transcription factor families in plants, the NAC and WRKY factors appear to play central roles in senescence regulation. In this review, we summarize the current knowledge on the role of WRKY factors with a special focus on WRKY53. In contrast to a holistic multi-omics view we want to exemplify the complexity of the network structure by summarizing the multilayer regulation of WRKY53 of Arabidopsis.

Keywords: WRKY transcription factors; WRKY53; leaf senescence; mechanisms of network regulation; redox regulation.

Publication types

  • Review