Efficacy of Commercial Sanitizers Used in Food Processing Facilities for Inactivation of Listeria Monocytogenes, E. Coli O157:H7, and Salmonella Biofilms

Foods. 2019 Dec 4;8(12):639. doi: 10.3390/foods8120639.

Abstract

Bacteria entrapped in biofilms are a source of recurring problems in food processing environments. We recently developed a robust, 7-day biofilm microplate protocol for creating biofilms with strongly adherent strains of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella serovars that could be used to examine the effectiveness of various commercial sanitizers. Listeria monocytogenes 99-38, E.coli O157:H7 F4546, and Salmonella Montevideo FSIS 051 were determined from prior studies to be good biofilm formers and could be recovered and enumerated from biofilms following treatment with trypsin. Extended biofilms were generated by cycles of growth and washing daily, for 7 days, to remove planktonic cells. We examined five different sanitizers (three used at two different concentrations) for efficacy against the three pathogenic biofilms. Quaternary ammonium chloride (QAC) and chlorine-based sanitizers were the least effective, showing partial inhibition of the various biofilms within 2 h (1-2 log reduction). The best performing sanitizer across all three pathogens was a combination of modified QAC, hydrogen peroxide, and diacetin which resulted in ~6-7 log reduction, reaching levels below our limit of detection (LOD) within 1-2.5 min. All treatments were performed in triplicate replication and analyzed by one way repeated measures analysis of variance (RM-ANOVA) to determine significant differences (p < 0.05) in the response to sanitizer treatment over time. Analysis of 7-day biofilms by scanning electron microscopy (SEM) suggests the involvement of extracellular polysaccharides with Salmonella and E. coli, which may make their biofilms more impervious to sanitizers than L. monocytogenes.

Keywords: E. coli O157:H7; L. monocytogenes; Salmonella; biofilm; microplate assay; sanitizer.