Transcriptome of Chicken Liver Tissues Reveals the Candidate Genes and Pathways Responsible for Adaptation into Two Different Climatic Conditions

Animals (Basel). 2019 Dec 3;9(12):1076. doi: 10.3390/ani9121076.

Abstract

RNA sequencing was used to profile the liver transcriptome of a Korean commercial chicken (Hanhyup) at two different environments (Korea and Kyrgyzstan) to investigate their role during acclimatization into different climatic conditions. Ten samples from each location were analyzed to identify candidate genes that respond to environmental changes such as altitude, humidity, temperature, etc. Sequencing reads were preprocessed, aligned with the reference genome, assembled and expressions were estimated through bioinformatics approaches. At a false discovery rate (FDR) <0.05 and fold change (FC) ≥2, we found 315 genes were DE. Out of 315 DE genes, 174 and 141 were up- and down-regulated respectively in the Kyrgyz environment. Gene ontology (GO) enrichment analysis showed that the differentially expressed genes (DEGs) were associated with energy metabolism such as pyruvate and lactate metabolic processes, and glycerol catabolic process. Similarly, KEGG pathway analysis indicated pyruvate metabolism, glycolysis/gluconeogenesis, biosynthesis, citrate cycles were differentially enriched in the Kyrgyz environment. DEGs like TSKU, VTG1, SGK, CDK2, etc. in such pathways are highly involved in the adaptation of organisms into diverse climatic conditions. Our investigation may serve as a resource for the chicken industry, especially in exporting Hanhyup chicken from Korea to other countries.

Keywords: Hanhyup chicken; PPAR pathway; liver tissues; transcriptome.