Tuning Catalytic Bias of Hydrogen Gas Producing Hydrogenases

J Am Chem Soc. 2020 Jan 22;142(3):1227-1235. doi: 10.1021/jacs.9b08756. Epub 2020 Jan 10.

Abstract

Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron-sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been demonstrated. The microbe Clostridium pasteurianum produces three [FeFe]-hydrogenases that differ in "catalytic bias" by exerting a disproportionate rate acceleration in one direction or the other that spans a remarkable 6 orders of magnitude. The combination of high-resolution structural work, biochemical analyses, and computational modeling indicates that protein secondary interactions directly influence the relative stabilization/destabilization of different oxidation states of the active site metal cluster. This selective stabilization or destabilization of oxidation states can preferentially promote hydrogen oxidation or proton reduction and represents a simple yet elegant model by which a protein catalytic site can confer catalytic bias.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Catalysis
  • Clostridium / enzymology
  • Hydrogen / metabolism*
  • Hydrogenase / metabolism*
  • Oxidation-Reduction
  • X-Ray Diffraction

Substances

  • Hydrogen
  • Hydrogenase

Supplementary concepts

  • Clostridium pasteurianum