Prussian Blue Analogue-derived co/fe bimetallic nanoparticles immobilized on S/N-doped carbon sheet as a magnetic heterogeneous catalyst for activating peroxymonosulfate in water

Chemosphere. 2020 Apr:244:125444. doi: 10.1016/j.chemosphere.2019.125444. Epub 2019 Nov 22.

Abstract

While Co is the most effective metal for activating PMS, extensive efforts are made to develop Co/Fe species (CF) (e.g., CoFe2O4) for imparting magnetic properties and facilitating recovery of catalysts. When carbon substrates are doped with heteroatoms (e.g., S and N) and CF is embedded within the heteroatom-doped carbon matrix, synergies can occur to boost catalytic activities. This study proposes an alternative CF-bearing carbonaceous composite, a cobalt-containing Prussian Blue Analogue (PBA) (Co3[Fe(CN)6]2) is employed as a precursor for preparing CF species embedded in N-doped carbon matrix and immobilized on S/N-co-doped carbon (SNC). Specifically, PBA in-situ grows on SNC by a heat treatment of trithiocyanuric acid to form PBA@SNC, which is then carbonized into CF species@SNC (CF@SNC). By adopting Amaranth degradation as a model reaction, CF@SNC shows a higher catalytic activity (kapp = 0.230 min-1) than CF (kapp = 0.152 min-1) and SNC (kapp = 0.016 min-1) for activating PMS. In comparison with Co3O4, CF@SNC exhibits a higher catalytic activity for PMS activation. CF@SNC renders a relatively low Ea value (53 kJ/mol) for Amaranth degradation in comparison to other reported catalysts. These comparisons demonstrate the advantageous features of CF@SNC as a magnetic and efficient catalyst for PMS activation.

Keywords: Advanced oxidation; Cobalt-iron catalysts; Metal-carbon composites; Sulfate radicals; Sulfur-nitrogen doping.

MeSH terms

  • Carbon / chemistry*
  • Catalysis
  • Cobalt / chemistry
  • Ferrocyanides
  • Magnetic Phenomena
  • Magnetics
  • Metals
  • Models, Chemical
  • Nanoparticles / chemistry
  • Peroxides / chemistry*
  • Water
  • Water Pollutants, Chemical / chemistry*

Substances

  • Ferrocyanides
  • Metals
  • Peroxides
  • Water Pollutants, Chemical
  • Water
  • peroxymonosulfate
  • Cobalt
  • Carbon
  • ferric ferrocyanide